Sparse Recovery via Partial Regularization: Models, Theory and Algorithms
نویسندگان
چکیده
In the context of sparse recovery, it is known that most of existing regularizers such as `1 suffer from some bias incurred by some leading entries (in magnitude) of the associated vector. To neutralize this bias, we propose a class of models with partial regularizers for recovering a sparse solution of a linear system. We show that every local minimizer of these models is sufficiently sparse or the magnitude of all its nonzero entries is above a uniform constant depending only on the data of the linear system. Moreover, for a class of partial regularizers, any global minimizer of these models is a sparsest solution to the linear system. We also establish some sufficient conditions for local or global recovery of the sparsest solution to the linear system, among which one of the conditions is weaker than the best known restricted isometry property (RIP) condition for sparse recovery by `1. In addition, a first-order feasible augmented Lagrangian (FAL) method is proposed for solving these models, in which each subproblem is solved by a nonmonotone proximal gradient (NPG) method. Despite the complication of the partial regularizers, we show that each proximal subproblem in NPG can be solved as a certain number of one-dimensional optimization problems, which usually have a closed-form solution. We also show that any accumulation point of the sequence generated by FAL is a first-order stationary point of the models. Numerical results on compressed sensing and sparse logistic regression demonstrate that the proposed models substantially outperform the widely used ones in the literature in terms of solution quality.
منابع مشابه
Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation
Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0<p<1), which can be employed to obtain a sparser solution than the L₁ regularization. Recently, the multiple-state sparse transformation strategy has been developed to exploit the sparsity in L₁ regularization for sparse signal recovery, which combines the iterative reweighted algorithms. To further exploit the sparse structu...
متن کاملEfficient Sparse Recovery via Adaptive Non-Convex Regularizers with Oracle Property
The main shortcoming of sparse recovery with a convex regularizer is that it is a biased estimator and therefore will result in a suboptimal performance in many cases. Recent studies have shown, both theoretically and empirically, that non-convex regularizer is able to overcome the biased estimation problem. Although multiple algorithms have been developed for sparse recovery with non-convex re...
متن کاملJointly Sparse Vector Recovery via Reweighted
An iterative reweighted algorithm is proposed for the recovery of jointly sparse vectors from multiple-measurement vectors (MMV). The proposed MMV algorithm is an extension of the iterative reweighted 1 algorithm for single measurement problems. The proposed algorithm (M-IRL1) is demonstrated to outperform non-reweighted MMV algorithms under noiseless measurements. A regularization of the M-IRL...
متن کاملMotion-Adaptive Spatio-Temporal Regularization (MASTeR) for Accelerated Dynamic MRI
Accelerated MRI techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated MRI is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped for...
متن کاملEfficient ℓq Minimization Algorithms for Compressive Sensing Based on Proximity Operator
This paper considers solving the unconstrained lq-norm (0 ≤ q < 1) regularized least squares (lq-LS) problem for recovering sparse signals in compressive sensing. We propose two highly efficient first-order algorithms via incorporating the proximity operator for nonconvex lq-norm functions into the fast iterative shrinkage/thresholding (FISTA) and the alternative direction method of multipliers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1511.07293 شماره
صفحات -
تاریخ انتشار 2015